4.6 Article

Methodological aspects of MRI of transplanted superparamagnetic iron oxide-labeled mesenchymal stem cells in live rat brain

期刊

PLOS ONE
卷 12, 期 10, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0186717

关键词

-

资金

  1. Program for Basic Research of the State Academies of Sciences [0518-2014-0005]
  2. Ministry of Education and Science of the Russian Federation [14.621.21.0017, RFMEFI62117X0017]
  3. Russian Foundation for Basic Research [16-29-07116]

向作者/读者索取更多资源

In vivo tracking of transplanted mesenchymal stem cells (MSCs) migration and homing is vital for understanding the mechanisms of beneficial effects of MSCs transplantation in animal models of diseases and in clinical trials. Transplanted cells can be labeled with superparamagnetic iron oxide (SPIO) particles and visualized in vivo using a number of iron sensitive MRI techniques. However, the applicability of those techniques for SPIO-labeled MSCs tracking in live brain has not been sufficiently investigated. The goal of this study was to estimate the efficiency of various MRI techniques of SPIO-labeled cell tracing in the brain. To achieve that goal, the precision and specificity of T2WI, T2*WI and SWI (Susceptibility-Weighted Imaging) techniques of SPIO-labeled MSCs tracing in vitro and in live rat brain were for the first time compared in the same experiment. We have shown that SWI presents the most sensitive pulse sequence for SPIO-labeled MSCs MR visualization. After intracerebral administration due to limitations caused by local micro-hemorrhages the visualization threshold was 10(2) cells, while after intra-arterial transplantation SWI permitted detection of several cells or even single cells. There is just one publication claiming detection of individual SPIO-labeled MSCs in live brain, while the other state much lower sensitivity, describe detection of different cell types or high resolution tracing of MSCs in other tissues. This study confirms the possibility of single cell tracing in live brain and outlines the necessary conditions. SWI is a method convenient for the detection of single SPIO labeled MSCs and small groups of SPIO labeled MSCs in brain tissue and can be appropriate for monitoring migration and homing of transplanted cells in basic and translational neuroscience.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据