4.5 Article

Landscape of transcription and long non-coding RNAs reveals new insights into the inflammatory and fibrotic response following ventilator-induced lung injury

期刊

RESPIRATORY RESEARCH
卷 19, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s12931-018-0822-z

关键词

RNA-seq; Ventilator-induced lung injury; Lung fibrosis; LncRNAs

资金

  1. fund of The National Key Research and Development Program of China [2016YFC1304300]
  2. National Natural Science Foundation of China [81470270, 8140080765]

向作者/读者索取更多资源

Background: Mechanical ventilation can cause ventilator-induced lung injury (VILI) and lung fibrosis; however, the underlying mechanisms are still not fully understood. RNA sequencing is a powerful means for detecting vitally important protein-coding transcripts and long non-coding RNAs (lncRNAs) on a genome-wide scale, which may be helpful for reducing this knowledge gap. Methods: Ninety C57BL/6 mice were subjected to either high tidal volume ventilation or sham operation, and then mice with ventilation were randomly allocated to periods of recovery for 0, 1, 3, 5, 7, 14, 21, or 28 days. Lung histopathology, wet-to-dry weight ratio, hydroxyproline concentration, and transforming growth factor beta 1 (TGF-beta 1) levels were determined to evaluate the progression of inflammation and fibrosis. To compare sham-operated lungs, and 0- and 7-day post-ventilated lungs, RNA sequencing was used to elucidate the expression patterns, biological processes, and functional pathways involved in inflammation and fibrosis. Results: A well-defined fibrotic response was most pronounced on day 7 post-ventilation. Pairwise comparisons among the sham and VILI groups showed a total of 1297 differentially expressed transcripts (DETs). Gene Ontology analysis determined that the stimulus response and immune response were the most important factors involved in inflammation and fibrosis, respectively. Kyoto Encyclopedia of Genes and Genomes analysis revealed that mechanistic target of rapamycin (mTOR), Janus kinase-signal transducer and activator of transcription (JAK/STAT), and cyclic adenosine monophosphate (cAMP) signaling were implicated in early inflammation; whereas TGF-beta, hypoxia inducible factor-1 (HIF-1), Toll-like receptor (TLR), and kappa-light-chain-enhancer of activated B cells (NF-kappa B) signaling pathways were significantly involved in subsequent fibrosis. Additionally, 332 DE lncRNAs were identified and enriched in the processes of cellular and biological regulation. These lncRNAs may potentially regulate fibrosis through signaling pathways such as wingless/integrase-1 (Wnt), HIF-1, and TLR. Conclusions: This is the first transcriptome study to reveal all of the transcript expression patterns and critical pathways involved in the VILI fibrotic process based on the early inflammatory state, and to show the important DE lncRNAs regulated in inflammation and fibrosis. Together, the results of this study provide novel perspectives into the potential molecular mechanisms underlying VILI and subsequent fibrosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据