4.6 Article

Accurate and fast feature selection workflow for high-dimensional omics data

期刊

PLOS ONE
卷 12, 期 12, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0189875

关键词

-

资金

  1. BBSRC 'PROCESS' grant [BB/K01997X/1]
  2. Wellcome Trust [WT101477MA]
  3. EMBL core funding
  4. DZHK (German Center for Cardiovascular Research), partner sites: Kiel, Germany
  5. BBSRC [BB/K01997X/1, BB/K020145/1] Funding Source: UKRI
  6. Biotechnology and Biological Sciences Research Council [BB/K020145/1] Funding Source: researchfish

向作者/读者索取更多资源

We are moving into the age of 'Big Data' in biomedical research and bioinformatics. This trend could be encapsulated in this simple formula: D = S * F, where the volume of data generated (D) increases in both dimensions: the number of samples (S) and the number of sample features (F). Frequently, a typical omics classification includes redundant and irrelevant features (e.g. genes or proteins) that can result in long computation times; decrease of the model performance and the selection of suboptimal features (genes and proteins) after the classification/regression step. Multiple algorithms and reviews has been published to describe all the existing methods for feature selection, their strengths and weakness. However, the selection of the correct FS algorithm and strategy constitutes an enormous challenge. Despite the number and diversity of algorithms available, the proper choice of an approach for facing a specific problem often falls in a 'grey zone'. In this study, we select a subset of FS methods to develop an efficient workflow and an R package for bioinformatics machine learning problems. We cover relevant issues concerning FS, ranging from domain's problems to algorithm solutions and computational tools. Finally, we use seven different proteomics and gene expression datasets to evaluate the workflow and guide the FS process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据