4.7 Article

Molecular Gas Contents and Scaling Relations for Massive, Passive Galaxies at Intermediate Redshifts from the LEGA-C Survey

期刊

ASTROPHYSICAL JOURNAL
卷 860, 期 2, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.3847/1538-4357/aac438

关键词

galaxies: evolution; galaxies: high-redshift; galaxies: ISM

资金

  1. McDonald Observatory at the University of Texas at Austin through a Harlan J. Smith Fellowship
  2. Discovery Early Career Researcher Award of the Australian Research Council [DE150100618]
  3. National Science Foundation Astronomy and Astrophysics Fellowship grant [AST-1701546]
  4. ESO Telescopes at the La Silla Paranal Observatory [194-A.2005]
  5. STFC [ST/P00038X/1, ST/R000514/1] Funding Source: UKRI

向作者/读者索取更多资源

A decade of study has established that the molecular gas properties of star-forming galaxies follow coherent scaling relations out to z similar to 3, suggesting remarkable regularity of the interplay between molecular gas, star formation, and stellar growth. Passive galaxies, however, are expected to be gas-poor and therefore faint, and thus little is known about molecular gas in passive galaxies beyond the local universe. Here we present deep Atacama Large Millimeter/submillimeter Array observations of CO(2-1) emission in eight massive (M-star similar to 10(11 )M(circle dot)) galaxies at z similar to 0.7 selected to lie a factor of 3-10 below the star-forming sequence at this redshift, drawn from the Large Early Galaxy Astrophysics Census survey. We significantly detect half the sample, finding molecular gas fractions less than or similar to 0.1. We show that the molecular and stellar rotational axes are broadly consistent, arguing that the molecular gas was not accreted after the galaxies became quiescent. We find that scaling relations extrapolated from the star-forming population overpredict both the gas fraction and gas depletion time for passive objects, suggesting the existence of either a break or large increase in scatter in these relations at low specific star formation rate. Finally, we show that the gas fractions of the passive galaxies we have observed at intermediate redshifts are naturally consistent with evolution into local, massive early-type galaxies by continued low-level star formation, with no need for further gas accretion or dynamical stabilization of the gas reservoirs in the intervening 6 billion years.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据