4.6 Article

Influence of nanoparticle-mediated transfection on proliferation of primary immune cells in vitro and in vivo

期刊

PLOS ONE
卷 12, 期 5, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0176517

关键词

-

资金

  1. German Federal Ministry of Education and Research (BMBF) [1315883]
  2. Saxonian Ministery for Science and Art (Sachsisches Staatsministerium fur Wissenschaft and Kunst
  3. SMWK grant for the project Verfahren zur effizienten, Nanopartikelvermittelten Einschleusung therapeutischer Nukleinsauren in Zellen des Immunsystems zur
  4. Fraunhofer Internal Programs [Attract 131-600598]

向作者/读者索取更多资源

Introduction One of the main obstacles in the widespread application of gene therapeutic approaches is the necessity for efficient and safe transfection methods. For the introduction of small oligonucleotide gene therapeutics into a target cell, nanoparticle-based methods have been shown to be highly effective and safe. While immune cells are a most interesting target for gene therapy, transfection might influence basic immune functions such as cytokine expression and proliferation, and thus positively or negatively affect therapeutic intervention. Therefore, we investigated the effects of nanoparticle-mediated transfection such as polyethylenimine (PEI) or magnetic beads on immune cell proliferation. Methods Human adherent and non-adherent PBMCs were transfected by various methods (e.g. PEI, Lipofectamine (R) 2000, magnetofection) and stimulated. Proliferation was measured by lymphocyte transformation test (LTT). Cell cycle stages as well as expression of proliferation relevant genes were analyzed. Additionally, the impact of nanoparticles was investigated in vivo in a murine model of the severe systemic immune disease GvHD (graft versus host disease). Results The proliferation of primary immune cells was influenced by nanoparticle-mediated transfection. In particular in the case of magnetic beads, proliferation inhibition coincided with short-term cell cycle arrest and reduced expression of genes relevant for immune cell proliferation. Notably, proliferation inhibition translated into beneficial effects in a murine GvHD model with animals treated with PEI-nanoparticles showing increased survival (pPEI = 0.002) most likely due to reduced inflammation. Conclusion This study shows for the first time that nanoparticles utilized for gene therapeutic transfection are able to alter proliferation of immune cells and that this effect depends on the type of nanoparticle. For magnetic beads, this was accompanied by temporary cell cycle arrest. Notably, in GvHD this nonspecific anti-proliferative effect might contribute to reduced inflammation and increased survival.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据