3.9 Article

Evaluation of Statistical-Downscaling/Bias-Correction Methods to Predict Hydrologic Responses to Climate Change in the Zarrine River Basin, Iran

期刊

CLIMATE
卷 6, 期 2, 页码 -

出版社

MDPI
DOI: 10.3390/cli6020030

关键词

statistical downscaling; quantile mapping bias correction; SWAT hydrological model; dependable water release; Zarrine River Basin of Iran

向作者/读者索取更多资源

Modeling the hydrologic responses to future changes of climate is important for improving adaptive water management. In the present application to the Zarrine River Basin (ZRB), with the major reach being the main inflow source of Lake Urmia (LU), firstly future daily temperatures and precipitation are predicted using two statistical downscaling methods: the classical statistical downscaling model (SDSM), augmented by a trend-preserving bias correction, and a two-step updated quantile mapping (QM) method. The general circulation models (GCM) input to SDSM are climate predictors of the Canadian Earth System Model (CanESM2) GCM under the representative concentration pathway (RCP) emission scenarios, RCP45 and RCP85, whereas that to the QM is provided by the most suitable of several Climate Model Intercomparison Project Phase 5 (CMIP5) GCMs under RCP60, in addition. The performances of the two downscaling methods are compared to each other for a past future period (2006-2016) and the QM is found to be better and so is selected in the subsequent ZR streamflow simulations by means of the Soil and Water Assessment Tool (SWAT) hydrological model, calibrated and validated for the reference period (1991-2012). The impacts of climate change on the hydrologic response of the river basin, specifically the inflow to the Boukan Reservoir, the reservoir-dependable water release (DWR), are then compared for the three RCPs in the near- (2020-2038), middle- (2050-2068) and far- (2080-2098) future periods assuming (1) the current consumptive demand to be continued in the future, and (2) a more conservative recommended demand. A systematic future shortage of the available water is obtained for case (1) which can be mitigated somewhat for (2). Finally, the SWAT-predicted ZRB outflow is compared with the Montana-based estimated environmental flow of the ZR. The latter can successfully be sustained at good and fair levels for the near- and middle-future periods, but not so for the summer months of the far-future period, particularly, for RCP85.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据