4.7 Article

Fungal and herbivore elicitation of the novel maize sesquiterpenoid, zealexin A4, is attenuated by elevated CO2

期刊

PLANTA
卷 247, 期 4, 页码 863-873

出版社

SPRINGER
DOI: 10.1007/s00425-017-2830-5

关键词

Defense; Maize; Phytoalexin; Plant-microbe interactions; Zealexins

资金

  1. NSF-DMR award [1157490]
  2. State of Florida
  3. NIH [S10RR031637]
  4. US Department of Agriculture (USDA)-Agricultural Research Service Project [6036-21000-011-00D]
  5. NSF Division of Integrative Organismal Systems Competitive Award [1139329]

向作者/读者索取更多资源

Main conclusion Chemical isolation and NMR-based structure elucidation revealed a novel keto-acidic sesquiterpenoid, termed zealexin A4 (ZA4). ZA4 is elicited by pathogens and herbivory, but attenuated by heightened levels of CO (2) . The identification of the labdane-related diterpenoids, termed kauralexins and acidic sesquiterpenoids, termed zealexins, demonstrated the existence of at least ten novel stress-inducible maize metabolites with diverse antimicrobial activity. Despite these advances, the identity of co-occurring and predictably related analytes remains largely unexplored. In the current effort, we identify and characterize the first sesquiterpene keto acid derivative of beta-macrocarpene, named zealexin A4 (ZA4). Evaluation of diverse maize inbreds revealed that ZA4 is commonly produced in maize scutella during the first 14 days of seedling development; however, ZA4 production in the scutella was markedly reduced in seedlings grown in sterile soil. Elevated ZA4 production was observed in response to inoculation with adventitious fungal pathogens, such as Aspergillus flavus and Rhizopus microsporus, and a positive relationship between ZA4 production and expression of the predicted zealexin biosynthetic genes, terpene synthases 6 and 11 (Tps6 and Tps11), was observed. ZA4 exhibited significant antimicrobial activity against the mycotoxigenic pathogen A. flavus; however, ZA4 activity against R. microsporus was minimal, suggesting the potential of some fungi to detoxify ZA4. Significant induction of ZA4 production was also observed in response to infestation with the stem tunneling herbivore Ostrinia nubilalis. Examination of the interactive effects of elevated CO2 (E-CO2) on both fungal and herbivore-elicited ZA4 production revealed significantly reduced levels of inducible ZA4 accumulation, consistent with a negative role for E-CO2 on ZA4 production. Collectively, these results describe a novel beta-macrocarpene-derived antifungal defense in maize and expand the established diversity of zealexins that are differentially regulated in response to biotic/abiotic stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据