4.7 Article

Organization and evolution of four differentially amplified tandem repeats in the Cucumis hystrix genome

期刊

PLANTA
卷 246, 期 4, 页码 749-761

出版社

SPRINGER
DOI: 10.1007/s00425-017-2716-6

关键词

Tandem repeats; Chromosome structure; Cucumis hystrix; Chromosome evolution in Cucumis

资金

  1. Natural Science Foundation of China [31430075, 31471872]
  2. National Key Research and Development Program of China [2016YFD0101705, 2016YFD0100204-25]

向作者/读者索取更多资源

Three subtelomeric satellites and one interstitial 5S rDNA were characterized in Cucumis hystrix, and the pericentromeric signals of two C. hystrix subtelomeric satellites along C. sativus chromosomes supported the hypothesis of chromosome fusion in Cucumis. Tandem repeats are chromosome structural fractions consisting of highly repetitive sequences organized in large tandem arrays in most eukaryotes. Differentiation of tandem repeats directly affects the chromosome structure, which contributes to species formation and evolution. Cucumis hystrix (2n = 2x = 24) is the only wild Cucumis species grouped into the same subgenus with C. sativus (2n = 2x = 14), hence its phylogenetic position confers a vital role for C. hystrix to understand the chromosome evolution in Cucumis. However, our knowledge of C. hystrix tandem repeats is insufficient for a detailed understanding of the chromosome evolution in Cucumis. Based on de novo tandem repeat characterization using bioinformatics and in situ hybridization (ISH), we identified and characterized four differentially amplified tandem repeats, Cucumis hystrix satellite 1-3 (CuhySat1-CuhySat3) located at the subtelomeric regions of all chromosomes, and Cucumis hystrix 5S (Cuhy5S) located at the interstitial regions of one single chromosome pair. Comparative ISH mapping using CuhySat1-3 and Cuhy5S revealed high homology of tandem repeats between C. hystrix and C. sativus. Intriguingly, we found signal distribution variations of CuhySat2 and CuhySat3 on C. sativus chromosomes. In comparison to their subtelomeric signal distribution on C. hystrix chromosomes, CuhySat3 showed a pericentromeric signal distribution and CuhySat2 showed both subtelomeric and pericentromeric signal distributions on C. sativus chromosomes. This detailed characterization of four C. hystrix tandem repeats significantly widens our knowledge of the C. hystrix chromosome structure, and the observed signal distribution variations will be helpful for understanding the chromosome evolution of Cucumis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据