4.8 Article

Abscisic Acid Induces Resistance against Bamboo Mosaic Virus through Argonaute 2 and 3

期刊

PLANT PHYSIOLOGY
卷 174, 期 1, 页码 339-355

出版社

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.16.00015

关键词

-

资金

  1. Academia Sinica Investigator Award
  2. Ministry of Science and Technology, Taipei, Taiwan [1042321-B-001-055]

向作者/读者索取更多资源

Plant resistance to pathogens is tuned by defense-related hormones. Of these, abscisic acid (ABA) is well documented to moderate resistance against fungi and bacteria. However, ABA's contribution to resistance against viruses is pleiotropic. ABA affects callose deposition at plasmodesmata (therefore hindering the viral cell-to-cell movement), but here, we show that when callose synthase is down-regulated, ABA still induces resistance against infection with Bamboo mosaic virus (BaMV). By examining the potential connections between the ABA and RNA-silencing pathways in Arabidopsis (Arabidopsis thaliana), we showed that ABA regulates the expression of almost the whole ARGONAUTE (AGO) gene family, of which some are required for plant resistance against BaMV. Our data show that BaMV infection and ABA treatment regulate the same set of AGOs, with positive effects on AGO1, AGO2, and AGO3, no effect on AGO7, and negative effects on AGO4 and AGO10. The BaMV-mediated regulation of AGO1, AGO2, and AGO3 is ABA dependent, because the accumulation of these AGOs in BaMV-infected ABA mutants did not reach the levels observed in infected wild-type plants. In addition, the AGO1-miR168a complex is dispensable for BaMV resistance, while AGO2 and AGO3 were important for ABA-mediated resistance. While most ago mutants showed increased susceptibility to BaMV infection (except ago10), ago1-27 showed reduced BaMV titers, which was attributed to the up-regulated levels of AGO2, AGO3, and AGO4. We have established that ABA regulates the expression of several members of the AGO family, and this regulation partially contributes to ABA-mediated resistance against BaMV. These findings reveal another role for ABA in plants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据