4.4 Article

Cultivated and Wild Olives in Crete, Greece-Genetic Diversity and Relationships with Major Turkish Cultivars Revealed by SSR Markers

期刊

PLANT MOLECULAR BIOLOGY REPORTER
卷 35, 期 6, 页码 575-585

出版社

SPRINGER
DOI: 10.1007/s11105-017-1046-y

关键词

Classification binary tree; Cluster; Cultivar; Germplasm movement; Wild olives

资金

  1. Greek Secretariat for Research and Technology (GSRT), project Regional Innovation Pole of Crete, i4Crete, A8-Integrated system of olive oil fingerprinting control and promotion [11RIPC06]
  2. Erasmus fellowship

向作者/读者索取更多资源

The genetic relationships between and within some traditionally grown cultivars of olive tree (Olea europaea L.) in Greece (island of Crete) and in Turkey were investigated. Cultivars from Crete included 'Koroneiki', 'Throubolia' and 'Mastoidis', while those from Turkey included 'Samanli' and 'Gemlik'. Cultivars were represented by multiple genotypes of aged trees collected from the field, each one complying with established descriptors. Representative genotypes of wild olive trees from Crete were also employed. A total of 112 genotypes were analysed, employing seven microsatellite (SSR) loci yielding a total of 81 alleles, and reaching a cumulative probability of identity of 6.73 x 10(-09) with a mean observed heterozygosity of 0.852. Analysis of molecular variance significantly partitioned genetic diversity between and within cultivars, albeit with no appreciable difference between the two levels of diversity. All cultivar genotypes aggregated along single, cultivar-specific clusters, pointing to human-driven selection. The two Turkish cultivars 'Samanli' and 'Gemlik' were grouped together. The Cretan cultivar 'Throubolia' grouped together with the two Turkish cultivars, indicating germplasm movement across the Aegean Sea during historical times. Some gene flow was observed between the Cretan cultivars and the native wild populations (likely feral forms). SSR alleles were ranked for their efficiency in discriminating the examined materials, thus establishing a molecular key for cultivar identification. An identification process is proposed including a classification binary tree and provided a method for sorting any new unknown material purportedly originating from any of the analysed cultivars.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据