4.6 Article

Leaf-GP: an open and automated software application for measuring growth phenotypes for arabidopsis and wheat

期刊

PLANT METHODS
卷 13, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s13007-017-0266-3

关键词

Growth phenotypes; Automated trait analysis; Feature extraction; Computer vision; Software engineering; Arabidopsis; Wheat

资金

  1. BBSRC's Designing Future Wheat Cross-institute Strategic Programme [BB/P016855/1]
  2. Leverhulme Trust Research Project Grant [CA580-P11-H]
  3. BBSRC's FoF award [GP105-JZ1-B]
  4. BBSRC [BBS/E/J/000PR9779, BBS/E/T/000PR9785, BB/P028160/1, BBS/E/T/000PR9783, BBS/E/J/000PR9782, BBS/E/J/000CA393, BBS/E/J/000PR9789, BBS/E/J/000PR9781] Funding Source: UKRI
  5. Biotechnology and Biological Sciences Research Council [BBS/E/T/000PR9783, BBS/E/T/000PR9785, BBS/E/J/000PR9778, BB/P028160/1, BBS/E/J/000PR9779, BBS/E/J/000CA393, BBS/E/J/000PR9782, BBS/E/J/000PR9789, BBS/E/J/000PR9781] Funding Source: researchfish

向作者/读者索取更多资源

Background: Plants demonstrate dynamic growth phenotypes that are determined by genetic and environmental factors. Phenotypic analysis of growth features over time is a key approach to understand how plants interact with environmental change as well as respond to different treatments. Although the importance of measuring dynamic growth traits is widely recognised, available open software tools are limited in terms of batch image processing, multiple traits analyses, software usability and cross-referencing results between experiments, making automated phenotypic analysis problematic. Results: Here, we present Leaf-GP (Growth Phenotypes), an easy-to-use and open software application that can be executed on different computing platforms. To facilitate diverse scientific communities, we provide three software versions, including a graphic user interface (GUI) for personal computer (PC) users, a command-line interface for high-performance computer (HPC) users, and a well-commented interactive Jupyter Notebook (also known as the iPython Notebook) for computational biologists and computer scientists. The software is capable of extracting multiple growth traits automatically from large image datasets. We have utilised it in Arabidopsis thaliana and wheat (Triticum aestivum) growth studies at the Norwich Research Park (NRP, UK). By quantifying a number of growth phenotypes over time, we have identified diverse plant growth patterns between different genotypes under several experimental conditions. As Leaf-GP has been evaluated with noisy image series acquired by different imaging devices (e.g. smart-phones and digital cameras) and still produced reliable biological outputs, we therefore believe that our automated analysis workflow and customised computer vision based feature extraction software implementation can facilitate a broader plant research community for their growth and development studies. Furthermore, because we implemented Leaf-GP based on open Python-based computer vision, image analysis and machine learning libraries, we believe that our software not only can contribute to biological research, but also demonstrates how to utilise existing open numeric and scientific libraries (e.g. Scikit-image, OpenCV, SciPy and Scikit-learn) to build sound plant phenomics analytic solutions, in a efficient and effective way. Conclusions: Leaf-GP is a sophisticated software application that provides three approaches to quantify growth phenotypes from large image series. We demonstrate its usefulness and high accuracy based on two biological applications: (1) the quantification of growth traits for Arabidopsis genotypes under two temperature conditions; and (2) measuring wheat growth in the glasshouse over time. The software is easy-to-use and cross-platform, which can be executed on Mac OS, Windows and HPC, with open Python-based scientific libraries preinstalled. Our work presents the advancement of how to integrate computer vision, image analysis, machine learning and software engineering in plant phenomics software implementation. To serve the plant research community, our modulated source code, detailed comments, executables (.exe for Windows;. app for Mac), and experimental results are freely available at https://github.com/Crop-Phenomics-Group/Leaf-GP/releases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据