4.7 Article

Phenotype and Cellular Response of Wheat Lines Carrying Cre Genes to Heterodera avenae Pathotype Ha91

期刊

PLANT DISEASE
卷 101, 期 11, 页码 1885-1894

出版社

AMER PHYTOPATHOLOGICAL SOC
DOI: 10.1094/PDIS-03-17-0404-RE

关键词

-

资金

  1. Special Fund for Agro-scientific Research in the Public Interest [201503114]
  2. National Key Basic Research Program of China (973 Program) [National Key Basic Research Program of China (973 Program, 2013CB127502]

向作者/读者索取更多资源

The cereal cyst nematode (CCN, Heterodera avenae), a major limiting factor for wheat production worldwide, is widespread in most wheat-growing regions in China. Accordingly, screening and characterization of resistant (R) wheat sources against H. avenae are very important. In this study, we screened 51 wheat lines, collected from the International Wheat and Maize Improvement Center (CIMMYT), carrying various Cre genes (Cre 1, Cre2, Cre3, Cre5, Cre7, Cre8, CreR, and Pt). From that screen, we identified one immune (M) cultivar (with no adult females produced) and five resistant cultivars (with fewer than five females) to H. avenae pathotype Ha91. The Cre3 gene conferred the most effective resistance against H. avenae pathotype Ha91 in both field and greenhouse assays. Conversely, the Crel and CreR genes conferred the poorest effective resistance. Using Pluronic F-127 gel and a staining assay, juvenile nematodes invading wheat roots were observed, and nematode development was analyzed. Compared with R and M roots, those of the susceptible (S) wheat cultivar Wenmail9 were more attractive to H. avenae second-stage juveniles (J2s). We observed the retardation of nematode development in R cultivars and tiny white female cysts protruding from the R cultivar VP1620. Nematodes in M roots either disintegrated or remained J2s or third-stage juveniles (J3s) and failed to complete their life cycle. Molting was also suppressed or delayed in R and M genotypes. For both S and R cultivars, syncytia were characterized by cell wall perforations and dense cytoplasm in hypertrophied syncytium component cells. Syncytial size increased gradually with nematode development in S cultivars. Moreover, an incompatibility reaction occurred in M wheat roots: the syncytium was disorganized, exhibiting disintegration and condensed nuclei. These sources of genetic resistance against CCN can potentially be planted in severely infested fields to reduce economic loss or can be used for introgression in breeding.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据