4.7 Article

The light response of mesophyll conductance is controlled by structure across leaf profiles

期刊

PLANT CELL AND ENVIRONMENT
卷 40, 期 5, 页码 726-740

出版社

WILEY
DOI: 10.1111/pce.12890

关键词

Arbutus; Triticum; internal conductance; leaf anatomy; photosynthesis

资金

  1. Fonds de recherche du Quebec - Nature et technologie
  2. USDA NIFA [1001480]
  3. NIFA [1001480, 689455] Funding Source: Federal RePORTER

向作者/读者索取更多资源

Mesophyll conductance to CO2 (g(m)) may respond to light either through regulated dynamic mechanisms or due to anatomical and structural factors. At low light, some layers of cells in the leaf cross-section approach photocompensation and contribute minimally to bulk leaf photosynthesis and little to whole leaf g(m) (g(m,leaf)). Thus, the bulk g(m,leaf) will appear to respond to light despite being based upon cells having an anatomically fixed mesophyll conductance. Such behaviour was observed in species with contrasting leaf structure using the variable J or stable isotope method of measuring g(m,leaf). A species with bifacial structure, ArbutusxMarina', and an isobilateral species, Triticum durum L., had contrasting responses of g(m,leaf) upon varying adaxial or abaxial illumination. Anatomical observations, when coupled with the proposed model of g(m,leaf) to photosynthetic photon flux density (PPFD) response, successfully represented the observed gas exchange data. The theoretical and observed evidence that g(m,leaf) apparently responds to light has large implications for how g(m,leaf) values are interpreted, particularly limitation analyses, and indicates the importance of measuring g(m) under full light saturation. Responses of g(m,leaf) to the environment should be treated as an emergent property of a distributed 3D structure, and not solely a leaf area-based phenomenon.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据