4.7 Article

Enhancing auxin accumulation in maize root tips improves root growth and dwarfs plant height

期刊

PLANT BIOTECHNOLOGY JOURNAL
卷 16, 期 1, 页码 86-99

出版社

WILEY
DOI: 10.1111/pbi.12751

关键词

maize; transgenic breeding; ideal plant type; root architecture modification; yield

资金

  1. National Natural Science Foundation of China [31571674]
  2. Hi-Tech Research and Development (863 Program of China) [2012AA10A306]

向作者/读者索取更多资源

Maize is a globally important food, feed crop and raw material for the food and energy industry. Plant architecture optimization plays important roles in maize yield improvement. PIN-FORMED (PIN) proteins are important for regulating auxin spatiotemporal asymmetric distribution in multiple plant developmental processes. In this study, ZmPIN1a overexpression in maize increased the number of lateral roots and inhibited their elongation, forming a developed root system with longer seminal roots and denser lateral roots. ZmPIN1a overexpression reduced plant height, internode length and ear height. This modification of the maize phenotype increased the yield under high-density cultivation conditions, and the developed root system improved plant resistance to drought, lodging and a low-phosphate environment. IAA concentration, transport capacity determination and application of external IAA indicated that ZmPIN1a overexpression led to increased IAA transport from shoot to root. The increase in auxin in the root enabled the plant to allocate more carbohydrates to the roots, enhanced the growth of the root and improved plant resistance to environmental stress. These findings demonstrate that maize plant architecture can be improved by root breeding to create an ideal phenotype for further yield increases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据