4.7 Article

Enhanced Desiccation Tolerance in Mature Cultures of the Streptophytic Green Alga Zygnema circumcarinatum Revealed by Transcriptomics

期刊

PLANT AND CELL PHYSIOLOGY
卷 58, 期 12, 页码 2067-2084

出版社

OXFORD UNIV PRESS
DOI: 10.1093/pcp/pcx136

关键词

Desiccation tolerance; gene expression; streptophytic algae; transcriptomics; Zygnema

资金

  1. Austrian Science Fund (FWF) [P24242-B16, I1951-B16]
  2. Austrian Science Fund (FWF) [I1951] Funding Source: Austrian Science Fund (FWF)

向作者/读者索取更多资源

Desiccation tolerance is commonly regarded as one of the key features for the colonization of terrestrial habitats by green algae and the evolution of land plants. Extensive studies, focused mostly on physiology, have been carried out assessing the desiccation tolerance and resilience of the streptophytic genera Klebsormidium and Zygnema. Here we present transcriptomic analyses of Zygnema circumcarinatum exposed to desiccation stress. Cultures of Z. circumcarinatum grown in liquid medium or on agar plates were desiccated at similar to 86% relative air humidity until the effective quantum yield of PSII [Y(II)] ceased. In general, the response to dehydration was much more pronounced in Z. circumcarinatum cultured in liquid medium for 1 month compared with filaments grown on agar plates for 7 and 12 months. Culture on solid medium enables the alga to acclimate to dehydration much better and an increase in desiccation tolerance was clearly correlated to increased culture age. Moreover, gene expression analysis revealed that photosynthesis was strongly repressed upon desiccation treatment in the liquid culture while only minor effects were detected in filaments cultured on agar plates for 7 months. Otherwise, both samples showed induction of stress protection mechanisms such as reactive oxygen species scavenging (early light-induced proteins, glutathione metabolism) and DNA repair as well as the expression of chaperones and aquaporins. Additionally, Z. circumcarinatum cultured in liquid medium upregulated sucrose-synthesizing enzymes and strongly induced membrane modifications in response to desiccation stress. These results corroborate the previously described hardening and associated desiccation tolerance in Zygnema in response to seasonal fluctuations in water availability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据