4.5 Article

UV-induced somatic mutations elicit a functional T cell response in the YUMMER1.7 mouse melanoma model

期刊

PIGMENT CELL & MELANOMA RESEARCH
卷 30, 期 4, 页码 428-435

出版社

WILEY
DOI: 10.1111/pcmr.12591

关键词

Braf; immunotherapy; melanoma; mouse models; UV radiation

资金

  1. National Cancer Institute [P01 CA128814, R01 CA196660]
  2. Melanoma Research Alliance
  3. Melanoma Research Foundation
  4. Hervey Family Foundation

向作者/读者索取更多资源

Human melanomas exhibit relatively high somatic mutation burden compared to other malignancies. These somatic mutations may produce neoantigens that are recognized by the immune system, leading to an antitumor response. By irradiating a parental mouse melanoma cell line carrying three driver mutations with UVB and expanding a single-cell clone, we generated a mutagenized model that exhibits high somatic mutation burden. When inoculated at low cell numbers in immunocompetent C57BL/6J mice, YUMMER1.7 (Yale University Mouse Melanoma Exposed to Radiation) regresses after a brief period of growth. This regression phenotype is dependent on T cells as YUMMER1.7 tumors grow significantly faster in immunodeficient Rag1(-/-) mice and C57BL/6J mice depleted of CD4 and CD8 T cells. Interestingly, regression can be overcome by injecting higher cell numbers of YUMMER1.7, which results in tumors that grow without effective rejection. Mice that have previously rejected YUMMER1.7 tumors develop immunity against higher doses of YUMMER1.7 tumor challenge. In addition, escaping YUMMER1.7 tumors are sensitive to anti-CTLA-4 and anti-PD-1 therapy, establishing a new model for the evaluation of immune checkpoint inhibition and antitumor immune responses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据