4.5 Article Proceedings Paper

The effects of climate change associated abiotic stresses on maize phytochemical defenses

期刊

PHYTOCHEMISTRY REVIEWS
卷 17, 期 1, 页码 37-49

出版社

SPRINGER
DOI: 10.1007/s11101-017-9508-2

关键词

Maize; Abiotic and biotic stress; Benzoxazinoids; Volatile organic compounds; Terpenoid phytoalexins; Climate resilience

向作者/读者索取更多资源

Reliable large-scale maize production is an essential component of global food security; however, sustained efforts are needed to ensure optimized resilience under diverse crop stress conditions. Climate changes are expected to increase the frequency and intensity of both abiotic and biotic stress. Protective phytochemicals play an important role in both abiotic stress resilience and resistance to biotic challenges, yet the concentration and composition of these phytochemicals are also dependent on climate variables. We review the research on the effects of climate change associated abiotic stresses on three classes of maize defense metabolites, including benzoxazinoids, volatile organic compounds, and terpenoid phytoalexins. Despite significant knowledge gaps that still exist, it is evident that climate change will influence maize phytochemicals associated with resilient productivity. While broad generalizations are not yet possible, climate induced changes in phytochemicals are context specific and dependent upon developmental stage and tissue type. Under conditions of drought, maize modulates different classes of defense phytochemicals to protect the above-and belowground tissues. Aboveground the benzoxazinoid defenses are stimulated, but belowground terpenoid phytoalexins are predominantly deployed. Changes in the allocation or distribution of the different classes of defense metabolites or signaling molecules have the potential to further shape the biodiversity and abundance of pests within the maize agroecosystem. A better understanding of the underlying genetics, biosynthetic pathways, regulation and precise biological roles of maize phytochemicals modulated by arrays of climatic conditions will be required to ensure optimal plant resilience and productivity in the face of combined biotic and abiotic stresses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据