4.5 Article

DATA-DRIVEN TECHNIQUES FOR THE FAULT DIAGNOSIS OF A WIND TURBINE BENCHMARK

出版社

SCIENDO
DOI: 10.2478/amcs-2018-0018

关键词

fault diagnosis; analytical redundancy; fuzzy systems; neural networks; residual generators; fault estimation; wind turbine benchmark

向作者/读者索取更多资源

This paper deals with the fault diagnosis of wind turbines and investigates viable solutions to the problem of earlier fault detection and isolation. The design of the fault indicator, i.e., the fault estimate, involves data-driven approaches, as they can represent effective tools for coping with poor analytical knowledge of the system dynamics. together with noise and disturbances. In particular, the proposed data-driven solutions rely on fuzzy systems and neural networks that are used to describe the strongly nonlinear relationships between measurement and faults. The chosen architectures rely on nonlinear autoregressive models with exogenous input, as they can represent the dynamic evolution of the system along time. The developed fault diagnosis schemes are tested by means of a high-fidelity benchmark model that simulates the normal and the faulty behaviour of a wind turbine. The achieved performances are also compared with those of other model-based strategies from the related literature. Finally, a Monte-Carlo analysis validates the robustness and the reliability of the proposed solutions against typical parameter uncertainties and disturbances.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据