4.7 Review

Squeezed states of light and their applications in laser interferometers

期刊

出版社

ELSEVIER
DOI: 10.1016/j.physrep.2017.04.001

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft [SCHN 757-6]
  2. European Research Council (ERC) [339897]
  3. European Research Council (ERC) [339897] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

According to quantum theory the energy exchange between physical systems is quantized. As a direct consequence, measurement sensitivities are fundamentally limited by quantization noise, or just 'quantum noise' in short. Furthermore, Heisenberg's Uncertainty Principle demands measurement back-action for some observables of a system if they are measured repeatedly. In both respects, squeezed states are of high interest since they show a 'squeezed' uncertainty, which can be used to improve the sensitivity of measurement devices beyond the usual quantum noise limits including those impacted by quantum back-action noise. Squeezed states of light can be produced with nonlinear optics, and a large variety of proof-of-principle experiments were performed in past decades. As an actual application, squeezed light has now been used for several years to improve the measurement sensitivity of GEO 600 - a laser interferometer built for the detection of gravitational waves. Given this success, squeezed light is likely to significantly contribute to the new field of gravitational-wave astronomy. This Review revisits the concept of squeezed states and two-mode squeezed states of light, with a focus on experimental observations. The distinct properties of squeezed states displayed in quadrature phase-space as well as in the photon number representation are described. The role of the light's quantum noise in laser interferometers is summarized and the actual application of squeezed states in these measurement devices is reviewed. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据