4.4 Article

Epigenomic plasticity of Arabidopsis msh1 mutants under prolonged cold stress

期刊

PLANT DIRECT
卷 2, 期 8, 页码 -

出版社

JOHN WILEY & SONS LTD
DOI: 10.1002/pld3.79

关键词

abiotic stress; DNA methylation; phenotypic plasticity

资金

  1. Bill and Melinda Gates Foundation [OPP1088661]
  2. Bill and Melinda Gates Foundation [OPP1088661] Funding Source: Bill and Melinda Gates Foundation

向作者/读者索取更多资源

Dynamic transcriptional and epigenetic changes enable rapid adaptive benefit to environmental fluctuations. However, the underlying mechanisms and the extent to which this occurs are not well known. MutS Homolog 1 (MSH1) mutants cause heritable developmental phenotypes accompanied by modulation of defense, phytohormone, stress-response, and circadian rhythm genes, as well as heritable changes in DNA methylation patterns. Consistent with gene expression changes, msh1 mutants display enhanced tolerance for abiotic stress including drought and salt stress, while showing increased susceptibility to freezing temperatures. Despite changes in defense and biotic stress-response genes, msh1 mutants showed increasing susceptibility to the bacterial pathogen Pseudomonas syringae. Our results suggest that chronic cold and low light stress (10 degrees C, 150 mu mol m(-2) s(-1)) influences non-CG methylation to a greater degree in msh1 mutants compared to wild-type Col-0. Furthermore, CHG changes are more closely pericentromeric, whereas CHH changes are generally more dispersed. This increased variation in non-CG methylation pattern does not significantly affect the msh1-derived enhanced growth behavior after mutants are crossed with isogenic wild type, reiterating the importance of CG methylation changes in msh1-derived enhanced vigor. These results indicate that msh1methylome is hyper-responsive to environmental stress in a manner distinct from the wild-type response, but CG methylation changes are potentially responsible for growth vigor changes in the crossed progeny.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据