3.8 Article

Scalable Manufacturing of AgCu40(wt%)-WC Nanocomposite Microwires

期刊

出版社

ASME
DOI: 10.1115/1.4040558

关键词

-

资金

  1. National Science Foundation (NSF) [1449395]
  2. Div Of Civil, Mechanical, & Manufact Inn
  3. Directorate For Engineering [1449395] Funding Source: National Science Foundation

向作者/读者索取更多资源

Nanoparticle reinforced metals recently emerge as a new class of materials to empower the functionality of metallic materials. There is a remarkable success in self-incorporation of nanoparticles to bulk metals for extraordinary properties. There is also a strong demand to use nanoparticles to enhance the performance of metallic microwires for exciting opportunities in numerous applications. Here, we show for the first time that silver-copper alloy (AgCu) reinforced by tungsten carbide (WC) (AgCu40(wt%)-WC) was manufactured by a stir casting method utilizing a nanoparticle self-dispersion mechanism. The nanocomposite microwires were successfully fabricated using thermal drawing method. By introducing WC nanoparticles into bulk AgCu40 alloy, the Vickers microhardness was enhanced by 63% with 22 vol % WC nanoparticles, while the electrical conductivity dropped to 20.1% International Annealed Copper Standard (IACS). The microwires of AgCu40-10 vol % WC offered an ultimate tensile strength of 354 MPa, an enhancement of 74% from the pure alloy, and an elongation of 5.2%. The scalable manufacturing method provides a new pathway for the production of metallic nanocomposite micro/nanowires with outstanding performance for widespread applications, e.g., in biomedical, brazing, and electronics industries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据