4.6 Article

Understanding the dynamics of superparamagnetic particles under the influence of high field gradient arrays

期刊

PHYSICS IN MEDICINE AND BIOLOGY
卷 62, 期 6, 页码 2333-2360

出版社

IOP Publishing Ltd
DOI: 10.1088/1361-6560/aa5d46

关键词

magnetic drug targeting; Halbach array; magnetic nanoparticle; acoustic radiation pressure; particle trajectory; targeted drug delivery

资金

  1. Engineering and Physical Sciences Research Council [EP/I021795/1]
  2. Engineering and Physical Sciences Research Council [EP/I021795/1] Funding Source: researchfish
  3. EPSRC [EP/I021795/1] Funding Source: UKRI

向作者/读者索取更多资源

The aim of this study was to characterize the behaviour of superparamagnetic particles in magnetic drug targeting (MDT) schemes. A 3-dimensional mathematical model was developed, based on the analytical derivation of the trajectory of a magnetized particle suspended inside a fluid channel carrying laminar flow and in the vicinity of an external source of magnetic force. Semi-analytical expressions to quantify the proportion of captured particles, and their relative accumulation (concentration) as a function of distance along the wall of the channel were also derived. These were expressed in terms of a non-dimensional ratio of the relevant physical and physiological parameters corresponding to a given MDT protocol. The ability of the analytical model to assess magnetic targeting schemes was tested against numerical simulations of particle trajectories. The semianalytical expressions were found to provide good first-order approximations for the performance of MDT systems in which the magnetic force is relatively constant over a large spatial range. The numerical model was then used to test the suitability of a range of different designs of permanent magnet assemblies for MDT. The results indicated that magnetic arrays that emit a strong magnetic force that varies rapidly over a confined spatial range are the most suitable for concentrating magnetic particles in a localized region. By comparison, commonly used magnet geometries such as button magnets and linear Halbach arrays result in distributions of accumulated particles that are less efficient for delivery. The trajectories predicted by the numerical model were verified experimentally by acoustically focusing magnetic microbeads flowing in a glass capillary channel, and optically tracking their path past a high field gradient Halbach array.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据