4.8 Article

Experimental Demonstration of Fault-Tolerant State Preparation with Superconducting Qubits

期刊

PHYSICAL REVIEW LETTERS
卷 119, 期 18, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.119.180501

关键词

-

资金

  1. Intelligence Advanced Research Projects Activity (IARPA) [W911NF-16-0114]
  2. ARO [W911NF-14-1-0124]

向作者/读者索取更多资源

Robust quantum computation requires encoding delicate quantum information into degrees of freedom that are hard for the environment to change. Quantum encodings have been demonstrated in many physical systems by observing and correcting storage errors, but applications require not just storing information; we must accurately compute even with faulty operations. The theory of fault-tolerant quantum computing illuminates a way forward by providing a foundation and collection of techniques for limiting the spread of errors. Here we implement one of the smallest quantum codes in a five-qubit superconducting transmon device and demonstrate fault-tolerant state preparation. We characterize the resulting code words through quantum process tomography and study the free evolution of the logical observables. Our results are consistent with fault-tolerant state preparation in a protected qubit subspace.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据