4.7 Article

Discovery of 21 New Changing-look AGNs in the Northern Sky

期刊

ASTROPHYSICAL JOURNAL
卷 862, 期 2, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.3847/1538-4357/aaca3a

关键词

black hole physics; galaxies: active; galaxies: nuclei

资金

  1. National Key R&D Program of China [2016YFA0400703]
  2. National Key Basic Research Program of China [2014CB845700]
  3. NSFC [11373008, 11533001]
  4. Alfred P. Sloan Foundation
  5. National Science Foundation
  6. U.S. Department of Energy Office of Science
  7. University of Arizona
  8. Brazilian Participation Group
  9. Brookhaven National Laboratory
  10. Carnegie Mellon University
  11. University of Florida
  12. French Participation Group
  13. German Participation Group
  14. Harvard University
  15. Instituto de Astrofisica de Canarias
  16. Michigan State/NotreDame/JINA Participation Group
  17. Johns Hopkins University
  18. Lawrence Berkeley National Laboratory
  19. Max Planck Institute for Astrophysics
  20. Max Planck Institute for Extraterrestrial Physics
  21. New Mexico State University
  22. New York University
  23. Ohio State University
  24. Pennsylvania State University
  25. University of Portsmouth
  26. Princeton University
  27. Spanish Participation Group
  28. University of Tokyo
  29. University of Utah
  30. Vanderbilt University
  31. University of Virginia
  32. University of Washington
  33. Yale University
  34. National Development and Reform Commission
  35. National Aeronautics and Space Administration [NNX08AR22G, NNG05GF22G]
  36. National Science Foundation [AST-1238877]
  37. US National Science Foundation [AST-0909182, AST-1313422]

向作者/读者索取更多资源

The rare case of changing-look (CL) active galactic nuclei (AGNs), with the appearance or disappearance of broad Balmer emission lines within a few years, challenges our understanding of the AGN unified model. We present a sample of 21 new CL AGNs at 0.08 < z < 0.58, which doubles the number of such objects known to date. These new CL AGNs were discovered in various ways, from (1) repeat spectra in the SDSS, (2) repeat spectra in the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) and SDSS, and (3) photometric variability and new spectroscopic observations. We use the photometric data from surveys, including the SDSS imaging survey, the Pan-STARRS1, the DESI Legacy imaging survey, the Wide field Infrared Survey Explorer (WISE), the Catalina Real-time Transient Survey, and the Palomar Transient Factory. The estimated upper limits of the transition timescale of the CL AGNs in this sample spans from 0.9 to 13 years in the rest-frame. The continuum flux in the optical and mid-infrared becomes brighter when the CL AGNs turn on, or vice versa. Variations of more than 0 2 mag in the W1 band were detected in 15 CL AGNs during the transition. The optical and mid-infrared variability is not consistent with the scenario of variable obscuration in 10 CL AGNs at more than the 3o confidence level. We confirm a bluer-when-brighter trend in the optical. However, the mid-infrared WISE colors Wl-W2 become redder when the objects become brighter in the W1 band, possibly due to a stronger hot dust contribution in the W2 band when the AGN activity becomes stronger. The physical mechanism of type transition is important for understanding the evolution of AGNs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据