4.8 Article

Two Universality Classes for the Many-Body Localization Transition

期刊

PHYSICAL REVIEW LETTERS
卷 119, 期 7, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.119.075702

关键词

-

资金

  1. NSF [DMR-1408560]
  2. Direct For Mathematical & Physical Scien
  3. Division Of Materials Research [1408560] Funding Source: National Science Foundation

向作者/读者索取更多资源

We provide a systematic comparison of the many-body localization (MBL) transition in spin chains with nonrandom quasiperiodic versus random fields. We find evidence suggesting that these belong to two separate universality classes: the first dominated by intrinsic intrasample randomness, and the second dominated by external intersample quenched randomness. We show that the effects of intersample quenched randomness are strongly growing, but not yet dominant, at the system sizes probed by exact-diagonalization studies on random models. Thus, the observed finite-size critical scaling collapses in such studies appear to be in a preasymptotic regime near the nonrandom universality class, but showing signs of the initial crossover towards the external-randomness-dominated universality class. Our results provide an explanation for why exact-diagonalization studies on random models see an apparent scaling near the transition while also obtaining finite-size scaling exponents that strongly violate Harris-Chayes bounds that apply to disorder-driven transitions. We also show that the MBL phase is more stable for the quasiperiodic model as compared to the random one, and the transition in the quasiperiodic model suffers less from certain finite-size effects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据