4.6 Article

Active Self-Organization of Actin-Microtubule Composite Self-Propelled Rods

期刊

FRONTIERS IN PHYSICS
卷 6, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fphy.2018.00075

关键词

active matter; non-equilibrium physics; phase transition; collective motion; myosin; kinesin

资金

  1. NSF-INSPIRE Award NSF-MCB [1344203]
  2. DoD ARO MURI [67455-CH-MUR]
  3. NSF MRSEC [DMR-1420382]
  4. NSF-MCB [1344203]
  5. American Heart Association [14GRNT20450002]
  6. Direct For Biological Sciences
  7. Div Of Molecular and Cellular Bioscience [1344203] Funding Source: National Science Foundation

向作者/读者索取更多资源

Spontaneous self-organization of active matter has been demonstrated in a number of biological systems including bacteria, cells, and cytoskeletal filaments. Cytoskeletal filaments act as active polar rods when they are propelled along a glass surface via motor proteins. Actin has previously been shown to display polar or nematic ordering, whereas microtubules have been shown to create large vortices. For the first time, we combine both the actin and microtubule gliding into a composite active system. In the absence of actin filaments, microtubule filament organization transitions from isotropic to nematic to polar as a function of filament density. We find that the presence of a crowder, methylcellulose, is essential for this transition. In the absence of microtubules, actin transitions from isotropic to nematic. In combination, microtubules are affected by the presence of actin and the overall density of the filaments, becoming entrained with the nematic alignment of actin. Actin filaments are not as affected by the presence of microtubules. These results serve as first step in exploring the rich emergent behavior that can result from composite active matter system with tunable particle properties, self-propulsion speeds, and interparticle interactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据