4.8 Article

Exact Single-Electron Approach to the Dynamics of Molecules in Strong Laser Fields

期刊

PHYSICAL REVIEW LETTERS
卷 118, 期 16, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.118.163202

关键词

-

向作者/读者索取更多资源

We present an exact single-electron picture that describes the correlated electron dynamics in strong laser fields. Our approach is based on the factorization of the electronic wave function as a product of a marginal and a conditional amplitude. The marginal amplitude, which depends only on one electronic coordinate and yields the exact one-electron density and current density, obeys a time-dependent Schrodinger equation with an effective time-dependent potential. The exact equations are used to derive an approximation that is a step towards general and feasible ab initio single-electron calculations for molecules. The derivation also sheds new light on the usual interpretation of the single-active electron approximation. From the study of model systems, we find that the exact and approximate single-electron potentials for processes with negligible two-electron ionization lead to qualitatively similar dynamics, but that the ionization barrier in the exact single-electron potential may be explicitly time dependent.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据