4.8 Article

Nonlocal Parity Order in the Two-Dimensional Mott Insulator

期刊

PHYSICAL REVIEW LETTERS
卷 118, 期 15, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.118.157602

关键词

-

向作者/读者索取更多资源

The Mott insulator is characterized by having small deviations around the (integer) average particle density n, with pairs with n-1 and n + 1 particles forming bound states. In one dimension, the effect is captured by a nonzero value of a nonlocal string of parities, which instead vanishes in the superfluid phase where density fluctuations are large. Here, we investigate the interaction induced transition from the superfluid to the Mott insulator, in the paradigmatic Bose Hubbard model at n = 1. By means of quantum Monte Carlo simulations and finite size scaling analysis on L x M ladders, we explore the behavior of brane parity operators from one dimension (i.e., M = 1 and L -> 8) to two dimensions (i.e., M -> 8 and L -> 8). We confirm the conjecture that, adopting a standard definition, their average value decays to zero in two dimensions also in the insulating phase, evaluating the scaling factor of the perimeter law [S.P. Rath et al., Ann. Phys. (Berlin) 334, 256 (2013)]. Upon introducing a further phase in the brane parity, we show that its expectation value becomes nonzero in the insulator, while still vanishing at the transition to the superfluid phase. These quantities are directly accessible to experimental measures, thus providing an insightful signature of the Mott insulator.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据