4.8 Article

Triaxial-Stress-Induced Homogeneous Hysteresis-Free First-Order Phase Transformations with Stable Intermediate Phases

期刊

PHYSICAL REVIEW LETTERS
卷 118, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.118.025701

关键词

-

资金

  1. NSF [CMMI-1536925, DMR-1434613]
  2. ARO [W911NF-12-1-0340]
  3. ONR [N00014-16-1-2079]
  4. Iowa State University
  5. Direct For Mathematical & Physical Scien
  6. Division Of Materials Research [1434613] Funding Source: National Science Foundation
  7. Directorate For Engineering
  8. Div Of Civil, Mechanical, & Manufact Inn [1536925] Funding Source: National Science Foundation

向作者/读者索取更多资源

Starting with thermodynamic predictions and following with molecular dynamics simulations, special triaxial compression-tension states were found for which the stresses for the instability of the crystal lattice of silicon (Si) are the same for direct and reverse phase transformations (PTs) between semiconducting Si I and metallic Si II phases. This leads to unique homogeneous and hysteresis-free first-order PTs, for which each intermediate crystal lattice along the transformation path is in indifferent thermodynamic equilibrium and can be arrested and studied by fixing the strain in one direction. By approaching these stress states, a traditional two-phase system continuously transforms to homogenous intermediate phases. Zero hysteresis and homogeneous transformations are the optimal property for various PT applications, which drastically reduce damage and energy dissipation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据