4.6 Article

Aromaticity and antiaromaticity of substituted fulvene derivatives: perspectives from the information-theoretic approach in density functional reactivity theory

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 19, 期 28, 页码 18635-18645

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7cp03544f

关键词

-

资金

  1. National Natural Science Foundation of China [21503076]
  2. Hunan Provincial Natural Science Foundation of China [2017JJ3201]
  3. Hunan Provincial Innovation Foundation [CX2017B179]

向作者/读者索取更多资源

Even though the concept of aromaticity and antiaromaticity is extremely important and widely used, there still exist lots of controversies in the literature, which are believed to be originated from the fact that there are so many aromatic types discovered and at the same time there are many aromaticity indexes proposed. In this work, using seven series of substituted fulvene derivatives as an example and with the information-theoretic approach in density functional reactivity theory, we examine these concepts from a different perspective. We investigate the changing patterns of Shannon entropy, Fisher information, Ghosh-Berkowitz-Parr entropy, information gain, Onicescu information energy, and relative Renyi entropy on the ring carbon atoms of these systems. Meanwhile, we also consider variation trends of four representative kinds of aromaticity indexes such as FLU, HOMA, ASE and NICS. Statistical analyses among these quantities show that with the same ring structure of the derivatives, both information-theoretic quantities and aromaticity indexes obey the same changing pattern, which are valid across all seven systems studied. However, cross correlations between these two sets of quantities yield two completely opposite patterns. These ring-structure dependent correlations are in good agreement with Huckel's 4n + 2 rule of aromaticity and 4n rule of antiaromaticity. Our results should provide a novel and complementary viewpoint on how aromaticity and antiaromaticity should be appreciated and categorized. More studies are in progress to further our understanding about the matter.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据