4.7 Article

Advanced sliding mode control techniques for Inverted Pendulum: Modelling and simulation

出版社

ELSEVIER - DIVISION REED ELSEVIER INDIA PVT LTD
DOI: 10.1016/j.jestch.2018.06.010

关键词

Inverted Pendulum (IP); Sliding mode control; Lyapunov stability

向作者/读者索取更多资源

Numerous practical applications like robot balancing, segway and hover board riding and operation of a rocket propeller are inherently based on Inverted Pendulum (IP). The control of an IP is a sophisticated problem due to various real world phenomena that make it unstable, non-linear and under-actuated system. This paper presents a comparative analysis of linear and non-linear feedback control techniques based on investigation of time, control energy and tracking error to obtain best control performance for the IP system. The implemented control techniques are Linear Quadratic controller (LQR), Sliding Mode Control (SMC) through feedback linearization, Integral Sliding Mode Control (ISMC) and Terminal Sliding Mode Control (TSMC). Considering cart position and pendulum angle, the designed control laws have been subjected to various test signals so as to characterize their tracking performance. Comparative results indicate that ISMC gives a rise time of 0.6 s with 0% overshoot and over-performs compared to other control techniques in terms of reduced chattering, less settling time and small steady state error. (C) 2018 Karabuk University. Publishing services by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据