4.6 Article

Unique agreement of experimental and computational infrared spectroscopy: a case study of lithium bromide solvation in an important electrochemical solvent

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 19, 期 13, 页码 9270-9280

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6cp08799j

关键词

-

资金

  1. statutory fund of the Gdansk University of Technology

向作者/读者索取更多资源

Infrared (IR) spectroscopy is a widely used and invaluable tool in the studies of solvation phenomena in electrolyte solutions. Using state-of-the-art chemometric analysis of a spectral series measured in a concentration-dependent manner, the spectrum of the solute-affected solvent can be extracted, providing a detailed view of the structural and energetic states of the solvent molecules influenced by the solute. Concurrently, ab initio molecular dynamics (AIMD) simulations provide the solvation shell picture at an atomistic detail level and allow for a consistent decomposition of the theoretical IR spectrum in terms of distance-dependent contributions of the solvent molecules. Here, we show for the first time how the chemometric techniques designed with the analysis of experimental data in mind can be harnessed to extract corresponding information from the computed IR spectra for mutual benefit, but without any mutual input. The wide applicability of this two-track approach is demonstrated using lithium bromide solvation in gamma-butyrolactone (GBL) as a showcase. GBL is a cyclic ester with extensive applications as a solvent in electrochemistry and we are particularly motivated by its usefulness in the rechargeable cell industry which justifies further studies of lithium cation solvation in GBL. The combination of experiment and simulations firmly asserts the strong solvent structuring character of Li+ and a comparatively weak influence exerted on the solvent by Br-.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据