4.6 Article

Influence of functional groups on water splitting in carbon nanodot and graphitic carbon nitride composites: a theoretical mechanism study

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 19, 期 7, 页码 4997-5003

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6cp08622e

关键词

-

资金

  1. National Natural Science Foundation of China [21433006, 21573131, 21173130]
  2. Natural Science Foundation of Shandong Province [JQ201603]

向作者/读者索取更多资源

The coupling of carbon nanodots (C-Dots) with graphitic carbon nitride (g-C3N4) has been demonstrated to boost the overall photocatalytic solar water splitting efficiency. However, the understanding on the role of the C-Dots and how the structure of C-Dots influences the photocatalytic reaction is still limited. In this work, we investigate the excited states of some C-Dot/g-C3N4 composites with the C-Dots containing different functional groups including -OH, -CHO and -COOH by first-principles many-body Green's function theory. It is found that the increase of efficiency can be ascribed to the high separation rate and the low recombination rate of the electron-hole pair benefiting from the emergence of the charge-transfer excited state between the C-Dots and g-C3N4. Functional groups on the C-Dots play a crucial role in determining the charge transfer direction, active sites for reduction reaction and oxidation reaction of water, and whether the reaction is a four-electron process or a two-electron/two-electron process. These results can provide guidance for the design and optimization of the C-Dots for heterojunction photocatalysts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据