4.6 Article

Polaron dynamics in anisotropic Holstein-Peierls systems

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 19, 期 5, 页码 4078-4084

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6cp07478b

关键词

-

资金

  1. Brazilian Research Council FAP-DF [0193.000942/2015]
  2. Brazilian Ministry of Planning, Budget and Management [DIPLA 005/2016]

向作者/读者索取更多资源

Polaron dynamics in anisotropic organic molecular semiconductors is theoretically investigated and simulated in the framework of a semi-classical Holstein-Peierls model. Our computational protocol is presented and applied to studies of a two-dimensional molecular crystal. The intermolecular (Peierls) parameters for a particular crystal direction are systematically changed in order to study the effect of anisotropy in the system. The usefulness of this methodology is highlighted by studying the polaron dynamics on a picosecond timescale, which provides a microscopic insight into the influence of the interplay between different intramolecular parameters on the charge transport mechanism. Our results show that the polaron mobility is substantially reduced in going from an anisotropic to an isotropic relationship between the Peierls parameters for different directions in the crystal. Interestingly, the molecular charge distribution presents three different signatures corresponding to a one-dimensional polaron, a two-dimensional polaron, and an intermediate state for which the polaron localization depends on the degree of anisotropy. Importantly, the two-dimensional polaron, which is present in the essentially isotropic system, is immobile whereas the other two types of polarons are mobile. This, in order for polaron transport to occur in a two-dimensional molecular based system, this system has to be anisotropic.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据