4.6 Article

Coherent and incoherent phonon transport in a graphene and nitrogenated holey graphene superlattice

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 19, 期 35, 页码 24240-24248

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7cp04219a

关键词

-

资金

  1. Nebraska Research Initiative

向作者/读者索取更多资源

The transition between coherent and incoherent phonon transport in a graphene (GRA) and nitrogenated holey graphene (C2N) superlattice is investigated by non-equilibrium molecular dynamics (NEMD) simulation. We find that the thermal conductivity of the GRA-C2N superlattice is much lower than those of graphene and C2N, and exhibits a positive correlation with the system length. Owing to three mechanisms, i. e., phonon wave interference, phonon confinement and phonon interface scattering, the calculated thermal conductivity shows a decreasing trend at small period length scales and gradually increases at large period length scales. The coherence length of the superlattice at 300 K is 4.43 nm, which is independent of the total length. In addition, the effects of temperature and uniaxial tensile strain on phonon transport are investigated. At 100 K, the coherent phonons play a more dominating role in the superlattice and the responding coherence length is enlarged to 7.38 nm. On the other hand, tensile strain can effectively reduce the thermal conductivity, which results from the phonon softening.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据