4.6 Article

Identifying electrochemical effects in a thermal-electrochemical co-driven system for CO2 capture

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 19, 期 20, 页码 13230-13244

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7cp01035d

关键词

-

资金

  1. National Natural Science Foundation of China [51506165]
  2. Natural Science Basic Research Plan in Shaanxi Province of China [2015JQ5192]
  3. Fundamental Research Funds for the Central Universities

向作者/读者索取更多资源

Currently, the most promising amine absorption system for CO2 capture still faces the challenges of heavy steam consumption and a high energy penalty. Thus, a new thermal-electrochemical co-driven system (TECS) for CO2 capture was developed to resolve these problems. In the TECS, unknown electrochemical behaviors are quite essential to assess the CO2 capture performance. Electrochemical experiments were designed using response surface methodology (RSM) to identify electrochemical effects. The results show that the cathode process is slow and difficult, which is the main limitation in improving the performance of the TECS. Forced convection is necessary to improve the diffusion-controlled process and accelerate desorption. Four factors (Cu(II) molality, CO2 loading, temperature, KNO3 molality) play an auxo-action role in determining anode and cathode reaction rates. A regression model is developed based on the experimental data, and optimum operating conditions are obtained. Regeneration energy consumption reaches about 1.3 GJ per t CO2, a decline of up to 70% compared with the traditional process. In addition, preliminary CO2 desorption experiments suggest that the mass transfer ascribed to the electrochemical process accounts for over 50% of the overall mass transfer coefficient in the CO2 desorption process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据