4.6 Article

Nitrate-assisted photocatalytic efficiency of defective Eu-doped Pr(OH)3 nanostructures

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 19, 期 47, 页码 31756-31765

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7cp06440c

关键词

-

资金

  1. Serbian Ministry of Education, Science and Technological Development [OI 171032, III 45018]
  2. Brazilian agency FAPESP
  3. Brazilian agency FACEPE
  4. Brazilian agency CNPq

向作者/读者索取更多资源

Pr(OH)(3) one-dimensional nanostructures are a less studied member of lanthanide hydroxide nanostructures, which recently demonstrated an excellent adsorption capacity for organic pollutant removal from wastewater. In this study, Pr1-xEux(OH)(3) (x = 0, 0.01, 0.03, and 0.05) defective nanostructures were synthesized by a facile and scalable microwave-assisted hydrothermal method using KOH as an alkaline metal precursor. The phase and surface composition, morphology, vibrational, electronic and optical properties of the as-prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma optical emission spectrometry (ICP-OES), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), Raman, infrared (IR), photoluminescence (PL), and diffuse reflectance spectroscopy (DRS). It was deduced that the incorporation of Eu3+ ions promoted the formation of oxygen vacancies in the already defective Pr(OH)(3), subsequently changing the Pr(OH)(3) nanorod morphology. The presence of KNO3 phase was registered in the Eu-doped samples. The oxygendeficient Eu-doped Pr(OH)(3) nanostructures displayed an improved photocatalytic activity in the removal of reactive orange (RO16) dye under UV-vis light irradiation. An enhanced photocatalytic activity of the Eu-doped Pr(OH)(3) nanostructures was caused by the synergetic effect of oxygen vacancies and Eu3+ (NO3-) ions present on the Pr(OH)(3) surface, the charge separation efficiency and the formation of the reactive radicals. In addition, the 3% Eu-doped sample exhibited very good adsorptive properties due to different morphology and higher electrostatic attraction with the anionic dye. Pr1-xEux(OH)(3) nanostructures with the possibility of tuning their adsorption/photocatalytic properties present a great potential for wastewater treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据