4.5 Article

Neurons Specifically Activated by Fear Learning in Lateral Amygdala Display Increased Synaptic Strength

期刊

ENEURO
卷 5, 期 3, 页码 -

出版社

SOC NEUROSCIENCE
DOI: 10.1523/ENEURO.0114-18.2018

关键词

amygdala; cFos; engram; fear learning; plasticity; synapse

资金

  1. National Health and Medical Research Council, Australia [10915693]
  2. Dowd Fellowship
  3. Victorian State Government infrastructure funds

向作者/读者索取更多资源

The lateral amygdala (LA) plays a critical role in the formation of fear-conditioned associative memories. Previous studies have used c-fos regulated expression to identify a spatially restricted population of neurons within the LA that is specifically activated by fear learning. These neurons are likely to be a part of a memory engram, but, to date, functional evidence for this has been lacking. We show that neurons within a spatially restricted region of the LA had an increase in both the frequency and amplitude of spontaneous postsynaptic currents (sPSC) when compared to neurons recorded from home cage control mice. We then more specifically addressed if this increased synaptic activity was limited to learning-activated neurons. Using a fos-tau-LacZ (FTL) transgenic mouse line, we developed a fluorescence-based method of identifying and recording from neurons activated by fear learning (FTL+) in acute brain slices. An increase in frequency and amplitude of sPSCs was observed in FTL+ neurons when compared to nonactivated FTL+ neurons in fear-conditioned mice. No learning-induced changes were observed in the action potential (AP) input-output relationships. These findings support the idea that a discrete LA neuron population forms part of a memory engram through changes in synaptic connectivity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据