4.7 Article

Exergoeconomic analysis and multi-objective optimization of an ejector refrigeration cycle powered by an internal combustion (HCCI) engine

期刊

ENERGY CONVERSION AND MANAGEMENT
卷 96, 期 -, 页码 403-417

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2015.02.081

关键词

Ejector; Refrigeration; HCCI; Exergoeconomic; Genetic algorithm; Optimization

向作者/读者索取更多资源

Ejector refrigeration systems powered by low-grade heat sources have been an attractive research subject for a lot of researchers. In the present work the waste heat from exhaust gases of a HCCI (homogeneous charge compression ignition) engine is utilized to drive the ejector refrigeration system. Considering the frictional effects on the ejector wall, a new two-dimensional model is developed for the ejector. Energy, exergy and exergoeconomic analysis performed for the proposed system using the MATLAB software. In addition, considering the exergy efficiency and the product unit cost of the system as objective functions, a multi-objective optimization is performed for the system to find the optimum design variables including the generator, condenser and evaporator temperatures. The product unit cost is minimized while the exergy efficiency is maximized using the genetic algorithm. The optimization results are obtained as a set of optimal points and the Pareto frontier is plotted for multi-objective optimization. The results of the optimization show that ejector refrigeration cycle is operating at optimum state based on exergy efficiency and product unit cost when generator, condenser and evaporator work at 94.54 degrees C, 33.44 degrees C and 0.03 degrees C, respectively. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据