4.6 Article

Enhancement of visual cortex plasticity by dark exposure

出版社

ROYAL SOC
DOI: 10.1098/rstb.2016.0159

关键词

visual cortex; ocular dominance; mouse; plasticity; imaging; parvalbumin

类别

资金

  1. Biotechnology and Biological Sciences Research Council [BB/J002089/1, BB/M021408/1]
  2. European Commission (Seventh Framework Programme) [223326]
  3. Biotechnology and Biological Sciences Research Council [BB/M021408/1, BB/J002089/1] Funding Source: researchfish
  4. BBSRC [BB/J002089/1, BB/M021408/1] Funding Source: UKRI

向作者/读者索取更多资源

Dark rearing is known to delay the time course of the critical period for ocular dominance plasticity in the visual cortex. Recent evidence suggests that a period of dark exposure (DE) may enhance or reinstate plasticity even after closure of the critical period, mediated through modification of the excitatory-inhibitory balance and/or removal of structural brakes on plasticity. Here, we investigated the effects of a week of DE on the recovery from a month of monocular deprivation (MD) in the primary visual cortex (V1) of juvenile mice. Optical imaging of intrinsic signals revealed that ocular dominance in V1 of mice that had received DE recovered slightly more quickly than of mice that had not, but the level of recovery after three weeks was similar in both groups. Two-photon calcium imaging showed no significant difference in the recovery of orientation selectivity of excitatory neurons between the two groups. Parvalbumin-positive (PV+) interneurons exhibited a smaller ocular dominance shift during MD but again no differences in subsequent recovery. The percentage of PV+ cells surrounded by perineuronal nets, a structural brake on plasticity, was lower in mice with than those without DE. Overall, DE causes a modest enhancement of mouse visual cortex plasticity. This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据