4.5 Article

The abuse potential of two novel synthetic cathinones with modification on the alpha-carbon position, 2-cyclohexyl-2-(methylamino)-1-phenylethanone (MACHP) and 2-(methylamino)-1-phenyloctan-1-one (MAOP), and their effects on dopaminergic activity

期刊

PHARMACOLOGY BIOCHEMISTRY AND BEHAVIOR
卷 153, 期 -, 页码 160-167

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.pbb.2016.12.017

关键词

Synthetic cathinones; Conditioned place preference; Self-administration; Locomotor sensitization; Abuse potential

资金

  1. Ministry of Food and Drug Safety (MFDS) of Korea [14182MFDS979]

向作者/读者索取更多资源

The recreational use of synthetic cathinones has dramatically increased in recent years, which is partly due to easy accessibility and ability of synthetic cathinones to exert rewarding effects similar to cocaine and methamphetamine. Many synthetic cathinones have already been scheduled in several countries; however, novel and diverse synthetic cathinones are emerging at an unprecedented rate, often outpacing regulatory processes. Recently, designer modifications of the basic cathinone molecule are usually performed on the alpha-carbon position. In this study, we designed and synthesized two novel synthetic cathinones with substituents on alpha-carbon position, [1] 2-cyclohexyl-2-(methylamino)-1-phenylethanone (MACHP), and [2] 2-(methylamino)-1-phenyloctan-1-one (MAOP). Then, we evaluated their rewarding and reinforcing effects through the conditioned place preference (CPP) in mice and self-administration (SA) test in rats. Locomotor activity was also assessed in mice during daily MACHP or MAOP treatment for 7 days and drug challenge. qRT-PCR analyses were conducted to determine their effects on dopamine-related genes in the striatum. MACHP and MAOP produced CPP at 10 and 30 mg/kg. In the SA test, MACHP (1 mg/kg/infusion), but not MAOP, was self-administered. Both MACHP and MAOP induced locomotor sensitization in mice. qRT-PCR analyses showed that MACHP and MAOP reduced dopamine transporter gene expression in the striatum. These data indicate that MACHP and MAOP may have rewarding properties, which might be attributed to their ability to affect the dopaminergic activity. These findings may be useful in predicting the abuse potential and hasten the regulation of future cathinone entities with similar modifications. (C) 2017 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据