4.7 Article

Bimodal Patterning Discrimination in Harnessed Honey Bees

期刊

FRONTIERS IN PSYCHOLOGY
卷 9, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fpsyg.2018.01529

关键词

classical conditioning; bimodal learning; negative patterning; positive patterning; inter-trial interval; insect; honey bee

资金

  1. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico [CNPq: 457718/2014-5]
  2. Fundacao de Amparo a Pesquisa do Estado de Minas Gerais [FAPEMIG: APQ-02013-13]
  3. Program Young Talent of Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES/Science without Borders - Brazilian Government)

向作者/读者索取更多资源

In natural environments, stimuli and events learned by animals usually occur in a combination of more than one sensory modality. An important problem in experimental psychology has been thus to understand how organisms learn about multimodal compounds and how they discriminate this compounds from their unimodal constituents. Here we tested the ability of honey bees to learn bimodal patterning discriminations in which a visual-olfactory compound (AB) should be differentiated from its visual (A) and olfactory (B) elements. We found that harnessed bees trained in classical conditioning of the proboscis extension reflex (PER) are able to solve bimodal positive and negative patterning (NP) tasks. In positive patterning (PP), bees learned to respond significantly more to a bimodal reinforced compound (AB C) than to non-reinforced presentations of single visual (A) or olfactory (B) elements. In NP, bees learned to suppress their responses to a non-reinforced compound (AB) and increase their responses to reinforced presentations of visual (A C) or olfactory (B C) elements alone. We compared the effect of two different inter-trial intervals (ITI) in our conditioning approaches. Whereas an ITI of 8 min allowed solving both PP and NP, only PP could be solved with a shorter ITI of 3 min. In all successful cases of bimodal PP and NP, bees were still able to discriminate between reinforced and non-reinforced stimuli in memory tests performed one hour after conditioning. The analysis of individual performances in PP and NP revealed that different learning strategies emerged in distinct individuals. Both in PP and NP, high levels of generalization were found between elements and compound at the individual level, suggesting a similar difficulty for bees to solve these bimodal patterning tasks. We discuss our results in light of elemental and configural learning theories that may support the strategies adopted by honey bees to solve bimodal PP or NP discriminations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据