4.5 Article

Impact of Micellar Surfactant on Supersaturation and Insight into Solubilization Mechanisms in Supersaturated Solutions of Atazanavir

期刊

PHARMACEUTICAL RESEARCH
卷 34, 期 6, 页码 1276-1295

出版社

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s11095-017-2144-0

关键词

amorphous solubility; crystalline solubility; micelles; solubilization mechanism; supersaturation; surfactants

资金

  1. AbbVie Inc.

向作者/读者索取更多资源

The goals of this study were to determine: 1) the impact of surfactants on the amorphous solubility; 2) the thermodynamic supersaturation in the presence of surfactant micelles; 3) the mechanism of solute solubilization by surfactant micelles in supersaturated solutions. The crystalline and amorphous solubility of atazanavir was determined in the presence of varying concentrations of micellar sodium dodecyl sulfate (SDS). Flux measurements, using a side-by-side diffusion cell, were employed to determine the free and micellar-bound drug concentrations. The solubilization mechanism as a function of atazanavir concentration was probed using fluorescence spectroscopy. Pulsed gradient spin-echo proton nuclear magnetic resonance (PGSE-NMR) spectroscopy was used to determine the change in micelle size with a change in drug concentration. Changes in the micelle/water partition coefficient, K (m/w) , as a function of atazanavir concentration led to erroneous estimates of the supersaturation when using concentration ratios. In contrast, determining the free drug concentration using flux measurements enabled improved determination of the thermodynamic supersaturation in the presence of micelles. Fluorescence spectroscopic studies suggested that K (m/w) changed based on the location of atazanavir solubilization which in turn changed with concentration. Thus, at a concentration equivalent to the crystalline solubility, atazanavir is solubilized by adsorption at the micelle corona, whereas in highly supersaturated solutions it is also solubilized in the micellar core. This difference in solubilization mechanism can lead to a breakdown in the prediction of amorphous solubility in the presence of SDS as well as challenges with determining supersaturation. PGSE-NMR suggested that the size of the SDS micelle is not impacted at the crystalline solubility of the drug but increases when the drug concentration reaches the amorphous solubility, in agreement with the proposed changes in solubilization mechanism. Micellar solubilization of atazanavir is complex, with the solubilization mechanism changing with differences in the degree of (super)saturation. This can result in erroneous predictions of the amorphous solubility and thermodynamic supersaturation in the presence of solubilizing additives. This in turn hinders understanding of the driving force for phase transformations and membrane transport, which is essential to better understand supersaturating dosage forms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据