4.6 Article

Collective phases of identical particles interfering on linear multiports

期刊

PHYSICAL REVIEW A
卷 98, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.98.033805

关键词

-

资金

  1. National Council for Scientific and Technological Development (CNPq) of Brazil [304129/2015-1]
  2. Sao Paulo Research Foundation (FAPESP) [2015/23296-8, 2017/06774-9]

向作者/读者索取更多资源

We introduce collective geometric phases of bosons and fermions interfering on a linear unitary multiport, where each phase depends on the internal states of identical particles (i.e., not affected by the multiport) and corresponds to a cycle of the symmetric group. We show that quantum interference of N particles in generic pure internal states, i.e., with no pair being orthogonal, is governed by (N - 1)(N - 2)/2 independent triad phases (each involving only three particles). The deterministic distinguishability, preventing quantum interference with two or three particles, allows for the genuine (N >= 4)-particle phase (interference) on a multiport: setting each particle to be deterministically distinguishable from all others except two by their internal states allows for a novel (circle-dance) interference of N >= 4 particles governed by a collective N-particle phase, while simultaneously preventing the R-particle interference for 3 <= R <= N - 1. The genuine N-particle interference manifests the Nth-order quantum correlations between identical particles at a multiport output; it does not appear in the marginal probability for a subset of the particles, e.g., it cannot be detected if at least one of the particles is lost. This means that the collective phases are not detectable by the usual quantumness criteria based on the second-order quantum correlations. The results can be useful for quantum computation, quantum information, and other quantum technologies with single photons.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据