4.6 Article

Computational investigation of inverse Heusler compounds for spintronics applications

期刊

PHYSICAL REVIEW B
卷 98, 期 9, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.98.094410

关键词

-

资金

  1. National Science Foundation [DMREF-1235230, DMREF-1235396]
  2. ONR STTR [N00014-13-P-1056]
  3. Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]
  4. Rivanna high-performance cluster at the University of Virginia

向作者/读者索取更多资源

First-principles calculations of the electronic structure, magnetism, and structural stability of inverse Heusler compounds with the chemical formula X(2)YZ are presented and discussed with a goal of identifying compounds of interest for spintronics. Compounds for which the number of electrons per atom for Y exceed that for X and for which X and Y are each one of the 3d elements, Sc-Zn, and Z is one of the group IIIA-VA elements: Al, Ga, In, Si, Ge, Sn, P, As, or Sb were considered. The formation energy per atom of each compound was calculated. By comparing our calculated formation energies to those calculated for phases in the inorganic crystal structure database of observed phases, we estimate that inverse Heuslers with formation energies within 0.052 eV/atom of the calculated convex hull are reasonably likely to be synthesizable in equilibrium. The observed trends in the formation energy and relative structural stability as the X, Y, and Z elements vary are described. In addition to the Slater-Pauling gap after 12 states per formula unit in one of the spin channels, inverse Heusler phases often have gaps after 9 states or 14 states. We describe the origin and occurrence of these gaps. We identify 14 inverse Heusler semiconductors, 51 half-metals, and 50 near-half-metals with negative formation energy. In addition, our calculations predict 4 half-metals and 6 near-half-metals to lie close to the respective convex hull of stable phases, and thus may be experimentally realized under suitable synthesis conditions, resulting in potential candidates for future spintronics applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据