4.7 Article

Antioxidant enzymes and their role in phoxim and carbaryl stress in Caenorhabditis elegans

期刊

PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY
卷 138, 期 -, 页码 43-50

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.pestbp.2017.02.005

关键词

Caenorhabditis elegans; Phoxim; Carbaryl; Antioxidant enzymes; Oxidative stress

资金

  1. National Natural Science Foundation of China [31320103921]

向作者/读者索取更多资源

Pesticide exposure can induce oxidative stress and cause changes to antioxidant enzymes in living organisms. In the present study, the effects of phoxim (an organophosphorus insecticide) and carbaryl (a carbamate insecticide) on antioxidant enzyme activity and gene expression were investigated in the model organism Caenorhabditis elegans. The results show that phoxim exposure can induce superoxide dismutase (SOD) and catalase (CAT) activities and decrease glutathione peroxidase (GPx) activity at lower concentrations. The expression levels of sod-3, sod-5, ctl-1, gpx-6, and gpx-8 were up-regulated after treatment with phoxim. The mRNA expression levels of sod-5, ctl-1 and gpx-6 were increased approximately 70-, 170- and 130-fold, respectively, in the 0.25 mM treatment group compared to the control group. Carbaryl exposure decreased SOD activity and induced CAT and GPx activities. The addition of carbaryl up-regulated the expression of sod-5, ctl-1, ctl-3 and gpx-8. Specifically, ctl-1 expression increased approximately 10-fold, and gpx-8 expression increased < 30-fold in the 0.5 mM treatment group relative to the control group. The transcript level of sod-5 increased > 20-fold, and ctl-3 increased approximately 10-fold in the 1 mM treatment group. The functions of the antioxidant enzymes during oxidative stress caused by the two insecticides were investigated using deletion mutants. The LC50 values phoxim for the of sod-3 (tm760), sod-5 (tm1146), ctl-1 (ok1242), ctl-3 (ok2042) and gpx-8 (tm2108) mutant strains were lower than those observed for the N2 strain. The LC50 values of carbaryl for the ctl-1 (ok1242), ctl-3 (ok2042) and gpx-6 (tm2535) deletion mutant strains decreased in comparison to the N2 strain. The results suggest that these two insecticides caused oxidative stress and changed altered the antioxidant enzyme activities and their gene expressions in C elegans. The sod-3, sod-5, ctl-1, ctl-3, gpx-6, and gpx-8 encoding enzymes may play roles in defending cells from oxidative stress caused by these two insecticides. (C) 2017 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据