4.7 Article

Numerical investigation to the dual-fuel spray combustion process in an ethanol direct injection plus gasoline port injection (EDI plus GPI) engine

期刊

ENERGY CONVERSION AND MANAGEMENT
卷 92, 期 -, 页码 275-286

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2014.12.064

关键词

Ethanol direct injection; Gasoline port injection; Two-fraction mixture; Partially premixed combustion; CFD modelling

资金

  1. China Scholarship Council (CSC)

向作者/读者索取更多资源

Ethanol direct injection plus gasoline port injection (EDI + GPI) is a new technology to make the use of ethanol fuel more effective and efficient in spark ignition engines. Multi-dimensional computational fluid dynamics modelling was conducted on an EDI + GPI engine in both single and dual fuelled conditions. The in-cylinder flow field was solved in the realizable k - epsilon turbulence model with detailed engine geometry. The temporal and spatial distributions of the liquid and vapour fuels were simulated with the spray breakup and evaporation models. The combustion process was modelled with the partially premixed combustion concept in which both mixture fraction and progress variable were solved. The three-dimensional and five-dimensional presumed Probability Density Function (PDF) look-up tables were used to model the single-fraction-mixture and two-fraction-mixture turbulence-chemistry interactions respectively. The model was verified by comparing the numerical and experimental results of spray pattern and cylinder pressure. The simulation results showed that the combustion process of EDI + GPI dual-fuelled condition was partially premixed combustion because of the low evaporation rate of ethanol spray in low temperature environment before combustion. Compared with GPI only, the higher flame speed of ethanol fuel contributed to the greater pressure rise rate and maximum cylinder pressure in ED! + GPI condition, which consequently resulted in higher power output and thermal efficiency. The lower adiabatic flame temperature of ethanol, partially premixed combustion mode and stronger cooling effect of ethanol direct injection in EDI + GPI led to the reduced combustion temperature which contributed to the decrease of NO emission. Among these three factors, the lower adiabatic flame temperature and partially premixed combustion mode were the dominating factors that resulted in the low combustion temperature of EDI + GPI. On the other hand, CO and HC emissions increased because of the ethanol's low evaporation rate in low temperature environment before combustion, which caused incomplete combustion. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据