4.5 Article

Automated cardiovascular magnetic resonance image analysis with fully convolutional networks

期刊

出版社

BMC
DOI: 10.1186/s12968-018-0471-x

关键词

CMR image analysis; Fully convolutional networks; Machine learning

资金

  1. SmartHeart EPSRC Programme [EP/P001009/1]
  2. Marie Sklodowska Curie European Fellowship
  3. NIHR Barts Biomedical Research Centre
  4. MRC for the MRC eMedLab Medical Bioinformatics infrastructure [MR/L016311/1]
  5. Wellcome Trust [203553/Z/Z]
  6. NIHR Oxford Biomedical Research Centre
  7. Oxford BHF Centre of Research Excellence
  8. British Heart Foundation (BHF)
  9. Uehara Memorial Foundation
  10. Edmond J. Safra Foundation
  11. Imperial College Healthcare Trust Biomedical Research Centre
  12. EPSRC Centre for Mathematics in Precision Healthcare
  13. MRC
  14. EPSRC [EP/P001009/1, EP/N014529/1] Funding Source: UKRI
  15. MRC [MR/L016311/1] Funding Source: UKRI

向作者/读者索取更多资源

Background: Cardiovascular magnetic resonance (CMR) imaging is a standard imaging modality for assessing cardiovascular diseases (CVDs), the leading cause of death globally. CMR enables accurate quantification of the cardiac chamber volume, ejection fraction and myocardial mass, providing information for diagnosis and monitoring of CVDs. However, for years, clinicians have been relying on manual approaches for CMR image analysis, which is time consuming and prone to subjective errors. It is a major clinical challenge to automatically derive quantitative and clinically relevant information from CMR images. Methods: Deep neural networks have shown a great potential in image pattern recognition and segmentation for a variety of tasks. Here we demonstrate an automated analysis method for CMR images, which is based on a fully convolutional network (FCN). The network is trained and evaluated on a large-scale dataset from the UK Biobank, consisting of 4,875 subjects with 93,500 pixelwise annotated images. The performance of the method has been evaluated using a number of technical metrics, including the Dice metric, mean contour distance and Hausdorff distance, as well as clinically relevant measures, including left ventricle (LV) end-diastolic volume (LVEDV) and end-systolic volume (LVESV), LV mass (LVM); right ventricle (RV) end-diastolic volume (RVEDV) and end-systolic volume (RVESV). Results: By combining FCN with a large-scale annotated dataset, the proposed automated method achieves a high performance in segmenting the LV and RV on short-axis CMR images and the left atrium (LA) and right atrium (RA) on long-axis CMR images. On a short-axis image test set of 600 subjects, it achieves an average Dice metric of 0.94 for the LV cavity, 0.88 for the LV myocardium and 0.90 for the RV cavity. The mean absolute difference between automated measurement and manual measurement is 6.1 mL for LVEDV, 5.3 mL for LVESV, 6.9 gram for LVM, 8.5 mL for RVEDV and 7.2 mL for RVESV. On long-axis image test sets, the average Dice metric is 0.93 for the LA cavity (2-chamber view), 0.95 for the LA cavity (4-chamber view) and 0.96 for the RA cavity (4-chamber view). The performance is comparable to human inter-observer variability. Conclusions: We show that an automated method achieves a performance on par with human experts in analysing CMR images and deriving clinically relevant measures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据