4.2 Article

Influence of Charge on Hemocompatibility and Immunoreactivity of Polymeric Nanoparticles

期刊

ACS APPLIED BIO MATERIALS
卷 1, 期 3, 页码 756-767

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsabm.8b00220

关键词

nanomaterials; immune response; hemocompatibility; branched polymer; nanomedicines

资金

  1. Australian Research Council [LP150100703, DP140100951]
  2. National Health and Medical Research Council [APP1099321, APP1148582]
  3. ARC Centre of Excellence in Convergent Bio-Nano Science and Technology [CE140100036]
  4. University of Queensland Collaboration and Industry Engagement Fund
  5. Chinese Scholarship Council
  6. National Imaging Facility (NIF)
  7. Australian Research Council [LP150100703] Funding Source: Australian Research Council

向作者/读者索取更多资源

The benefits of nanomedicine may be restricted by hemocompatibility and immunoreactivity problems arising from administration of exogenous materials into the bloodstream. To understand how surface charge influences the interaction of polymeric nanoparticles with blood components, we synthesized three well-defined, charge-varied hyperbranched polymers (HBPs) of similar size and analyzed both hemocompatibility and immunoreactivity of these methacrylate-based HBPs ex vivo using primary human blood cell assays and image analyses following intravenous injection into mice. The results show that, regardless of charge, endotoxin-free HBPs had minimal effects on coagulation, platelet, complement, or T cell activation. However, high concentrations (100 mu g mL(-1)) of cationic HBPs led to significant dendritic cell activation, suggesting the potential application of these nanoparticles as vaccine adjuvants to aid efficient antigen presentation. Biodistribution studies showed that intravenously administered charge-neutral HBPs had a longer retention time in the circulation than cationic or anionic HBPs; whereas these neutral HBPs were eventually cleared in the urine, charged HBPs mainly accumulated in liver and spleen. Overall, these results demonstrate that, regardless of surface charge, HBPs display a high level of hemocompatibility. In contrast, immunoreactivity and biodistribution are significantly influenced by charge. Manipulation of surface charge may thus be a useful method by which nanomaterials such as HBPs can be tailored to different clinical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据