4.7 Article

The Formation of Extremely Diffuse Galaxy Cores by Merging Supermassive Black Holes

期刊

ASTROPHYSICAL JOURNAL
卷 864, 期 2, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.3847/1538-4357/aada47

关键词

galaxies: individual (NGC 1600); galaxies: kinematics and dynamics; methods: numerical

资金

  1. MPA Garching Visitor Programme
  2. doctoral program of Particle Physics and Universe Sciences at the University of Helsinki
  3. Academy of Finland [274931]
  4. DFG Cluster of Excellence Origin and Structure of the Universe
  5. Academy of Finland (AKA) [274931, 274931] Funding Source: Academy of Finland (AKA)

向作者/读者索取更多资源

Given its velocity dispersion, the early-type galaxy NGC 1600 has an unusually massive (M-center dot = 1.7 x 10(10) M-circle dot) central supermassive black hole (SMBH) surrounded by a large core (r(b) = 0.7 kpc) with a tangentially biased stellar distribution. We present high-resolution equal-mass merger simulations including SMBHs to study the formation of such systems. The structural parameters of the progenitor ellipticals were chosen to produce merger remnants resembling NGC 1600. We test initial stellar density slopes of rho proportional to r(-1) and rho proportional to r(-3/2) and vary the initial SMBH masses from 8.5 x 10(8) to 8.5 x(.) 10(9) M-circle dot. With increasing SMBH mass, the merger remnants show a systematic decrease in central surface brightness, an increasing core size, and an increasingly tangentially biased central velocity anisotropy. Two-dimensional kinematic maps reveal decoupled, rotating core regions for the most massive SMBHs. The stellar cores form rapidly as the SMBHs become bound, while the velocity anisotropy develops more slowly after the SMBH binaries become hard. The simulated merger remnants follow distinct relations between the core radius and the sphere of influence, and the SMBH mass, similar to observed systems. We find a systematic change in the relations as a function of the progenitor density slope and present a simple scouring model reproducing this behavior. Finally, we find the best agreement with NGC 1600 using SMBH masses totaling the observed value of M-center dot = 1.7 x 10(10) M-circle dot. In general, density slopes of rho proportional to r(-3/2) for the progenitor galaxies are strongly favored for the equal-mass merger scenario.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据